Lp resolvent estimates for constant coefficient elliptic systems on Lipschitz domains
نویسندگان
چکیده
منابع مشابه
Weighted Estimates in L for Laplace’s Equation on Lipschitz Domains
Let Ω ⊂ Rd, d ≥ 3, be a bounded Lipschitz domain. For Laplace’s equation ∆u = 0 in Ω, we study the Dirichlet and Neumann problems with boundary data in the weighted space L2(∂Ω, ωαdσ), where ωα(Q) = |Q−Q0|α, Q0 is a fixed point on ∂Ω, and dσ denotes the surface measure on ∂Ω. We prove that there exists ε = ε(Ω) ∈ (0, 2] such that the Dirichlet problem is uniquely solvable if 1 − d < α < d − 3 +...
متن کاملResolvent Estimates for Elliptic Finite Element Operators in One Dimension
We prove the analyticity (uniform in h ) of the semigroups generated on Lp(0, 1), 1 < p < oo , by finite element analogues Ah of a onedimensional second-order elliptic operator A under Dirichlet boundary conditions. This is accomplished by showing the appropriate estimates for the resolvents by means of energy arguments. The results are applied to prove stability and optimal-order error bounds ...
متن کاملKrein Resolvent Formulas for Elliptic Boundary Problems in Nonsmooth Domains
The paper reports on a recent construction ofM -functions and Krĕın resolvent formulas for general closed extensions of an adjoint pair, and their implementation to boundary value problems for second-order strongly elliptic operators on smooth domains. The results are then extended to domains with C Hölder smoothness, by use of a recently developed calculus of pseudodifferential boundary operat...
متن کاملON Lp RESOLVENT ESTIMATES FOR LAPLACE-BELTRAMI OPERATORS ON COMPACT MANIFOLDS
In this article we prove L estimates for resolvents of Laplace-Beltrami operators on compact Riemannian manifolds, generalizing results of [12] in the Euclidean case and [17] for the torus. We follow [18] and construct Hadamard’s parametrix, then use classical boundedness results on integral operators with oscillatory kernels related to the Carleson and Sjölin condition. Our initial motivation ...
متن کاملBoundary Value Problems in Morrey Spaces for Elliptic Systems on Lipschitz Domains
Let Ω be a bounded Lipschitz domain in Rn, n ≥ 3. Let L be a second order elliptic system with constant coefficients satisfying the Legendre-Hadamard condition. We consider the Dirichlet problem Lu = 0 in Ω, u = f on ∂Ω with boundary data f in the Morrey space L2,λ(∂Ω). Assume that 0 ≤ λ < 2 + ε for n ≥ 4 where ε > 0 depends on Ω, and 0 ≤ λ ≤ 2 for n = 3. We obtain existence and uniqueness resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2014
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2014.08.010